| Tania (Obia ationa 2 4 Tha Hai | Source Makeurs of Duras Makeurs (4) Documber the | No | | |--|---|---|--| | Topic/Objectives: 3-1 The Unique Nature of Pure Water; (1) Describe the | | Name: | | | water's unique properties and relate these properties to its chemical structure; | | Date: | | | | inces will sink or float based on their densities; (3) | Period: | | | | erties of water affect marine organisms | flife on Fourth 2 | | | Essential Question: How does | the unique properties of water affect the survival of | of life on Earth? | | | | Tax | | | | Questions: | Notes: | | | | | The Importance of Water | | | | | Our bodies contain a high percentage of water. Marine organisms are mostly | | | | | water (by weight). | | | | | Seawater is primarily | _ and salt (about 99.5%). | | | | Molecular Structure | | | | | Each water molecule has two slightly po | ositive atoms and | | | | an negatively charged | | | | | Due to these slight electrical charges, w | Due to these singlification and ges) water molecules are attracted to one | | | | another, formingbo | nds. | | | | | | | | | | | | | | | | | | | (measured C, K or F) reflects the average kinetic energy of the | | | | | particles; the faster the movement the higher the temperature | | | | | (measured Cal or J) is the total kinetic energy of all the | | | | | particles in a substance or object. | | | | | One is the amount of heat necessary to raise the | | | | | temperature of 1 gram of water one degree C. | | | | | Comparing a cup of hot coffee to the Atlantic Ocean, the cup of coffee has a | | | | | higher, but the ocean has more | | | | | because it has far more mass. | | | | | Heat can be transferred from a substan | ice with | | | | temperature to a substance with a | Water is the only substance that naturally o | occurs in all three states on Earth— | | | | solid, liquid, and gas. | | | | | o In liquid water, | hold most of the | | | | molecules together in small groups. | | | | | If heat is added to water, the molecules | s break free of hydrogen bonds and go | | | | to the gaseous or vapor phase - | | | | | | | | | | Water freezes (becomes solid) when the molecules move so slowly that
hydrogen bonds form among molecules. | | | | | Water is extremely unusual in being | | | | | | | | | | as a solid than a | • | | | | A floating layer of ice doesn't freeze this allows erganism | | | | | doesn't freeze; this allows organisn | is to survive under ice layers. | | | | | | | | | mass of substance one degree C. o lce melts at a much higher temperature than similar substances because of | | | |----------|--|--|--| | | | | | | | its hydrogen bonds. | | | | | Ice also absorbs a lot of heat when it melts because of hydrogen bonding. | | | | | The amount of heat required to melt a substance is called its | | | | | , with water's being higher than | | | | | any other commonly occurring substance. | | | | | The amount of heat needed to raise a substance's temperature by a given | | | | | amount is its, where water has one of the | | | | | highest heat capacities of any naturally occurring substance. | | | | | | | | | | Water's protects marine organisms from | | | | | rapid and drastic temperature changes. | | | | | | | | | | is the atticking to path on a fine with a contract of the cont | | | | | is the sticking together of particles of the same substance. | | | | | Because water contains a large number of hydrogen bonds, water has more than other liquids. | | | | | is the measure of the elastic tendency of | | | | | liquids. | | | | | The cohesion of water molecules is greater than (sticking | | | | | together of particles of different substances). | | | | | Cohesive bonds cause water molecules to arrange into an ordered | | | | | at the water surface. | | | | | at the water sarrage. | | | | | | | | | | | | | | | Materials and a second | | | | | Water also acts as a, which means that substances can | | | | | dissolve in water. Water is known as the | | | | | Water is good at dissolving salts, which are made of | | | | | (electrically charged particles). | | | | | The in salt pull apart, or dissociate, when the salt | | | | | dissolves in water. | | | | | | | | | | | | | | | | | | | Summary: | | | | | - | is the amount of energy required to raise a